f()=证明是双she

来源:学生作业帮助网 编辑:作业帮 时间:2022/01/28 08:13:59
证明:f(x)是偶函数且f'(0)存在,则f'(0)=0

f(x)是偶函数,∴f(-h)=f(h),又f'(0)存在,∴h→0+时[f(h)-f(0)]/h与[f(-h)-f(0)]/(-h)的极限都存在且等于f'(0),[f(h)-f(0)]/h+[f(-

求证明;f(X)=f(x+1)+f(x-1)是周期函数

f(x+1)=f(x)-f(x-1)f(x+2)=f(x+1)-f(x)=f(x)-f(x-1)-f(x)=-f(x-1)f(x+3)=f(x+2)-f(x+1)=-f(x-1)-f(x)+f(x-1

离散数学集合论,证明:f是映射,设f:X->Y,f是单射当且仅当任意F属于2^X,f-1(f(F))=F

若f是单射,记Y*=f(X),f是X->Y*的双射,结论成立.若f不是单射,存在x1,x2∈X.y0∈Y,y0=f(x1)=f(x2).则x1,x2∈f-1({y0})令A={x1}∈2^X,f-1(

如何证明f(x+1)=f(-x+1)对称轴是x=1

很容易证明:首先1-x与1+x是关于x=1对称的吧,而题中又说f(1+x)=f(1-x)所以该函数关于x=1对称的任意两横坐标所对应的值(纵坐标)相等,所以该函数在x=1一侧的点关于x=1对称的点一定

设f(x)是偶函数,且f‘(0)存在,证明f'(0)=0

楼上正解不过如果f(x)为奇函数,结论成立f(0)=-f(-0),移项得,f(0)=0

若f(x)是偶函数且f'(0)(f(0)的导数)存在,证明:f'(0)=0.

证明:因为f(x)为偶函数所以f(x)=f(-x)此式两边对x求导有f'(x)=-f'(x)又因为f'(0)存在代入有f'(0)=-f'(0)故f'(0)=0证毕

严谨地证明f(x-2)=f(2-x)则对称轴是x=2

这个也可以换个别的方法思考:根据偶函数的定义f(x)=f(-x),而且,偶函数的性质中有一个是,函数图像是关于x轴对称的.知道上面的,那下面来看看这道题:稍微给这个式子变一下型:f(x-2)=f[-(

证明f(x)=x^3+1是实数集到实数集的双射

y=f(x)=x^3+1x属于实数R,y也属于实数R1.容易得到,对于任意不同的x1和x2有,f(x1)f(x2)2.对于任意的Y1属于R,存在唯一X1属于R使得Y1=f(X1),也即是X1=(Y1-

f(x+y)=f(x)f(y),证f(x)是是以e为底的指数函数?如何证明

这是假命题.只要指数函数,都满足这个条件.反之,满足这个条件的式子的函数,就太多太多啦.甚至我们并不知道它是啥样子,也不需要知道.总之,这个函数具有此性质.这就可以啦.

离散数学定理证明 设F、G、H是任意关系, 证明(F.G).H=F.(G.H)

任意属于(F.G).H存在z使得属于(F.G)并且属于H存在w使得属于F并且属于G且属于H存在w使得属于F且属于(G.H)属于F.(G.H)(这主要用关系合成的概念)

若定义域为R函数f(x)满足f(x+y)=2*f(x)*f(y),且f(0)不等于0,证明f(x)是偶函数

这是抽象函数,一般的处理方法是特殊指法,代值计算.要证偶函数,需从定义出发,最终得出结论:f(x)=f(-x),因不大好证,可通过变形,证出:f(x)-f(-x)=0,或f(x)+f(-x)=2f(x

f(x)是周期函数,f(x)=f(x+T) 证明如下积分成立

设k为整数∫[kT,(k+1)T]f(x)dx=∫[kT,(k+1)T]f(x-kT)dx=∫[0,T]f(x)dx所以∫[0,nT]f(x)dx=∫[0,T]f(x)dx+∫[T,2T]f(x)dx

函数f(x)是定义在R上的奇函数,f(x+2)=-f(x) ,证明是周期函数

证明:∵f(x+2)=-f(x)∴f(x+4)=-f(x+2)=-[-f(x)]=f(x)∴f(x)是周期函数

请问:已知f(x+k)=-f(x),证明f(x)是周期函数,谢谢!

f(x+2k)=-f(x+k)=f(x),周期为2k的周期函数!(要求k不等于0)

已知f(x+k)=-f(x),证明f(x)是周期函数 o>_

f(x+k+k)=-f(x+k)=f(x)再问:不好意思,我成绩不好,有点看不明白,可以跟我详细讲讲吗?再答:令x+k=y则有f(x+k+k)=f(y+k)题目中的x就代表一个未知数由UI可知f(y+

证明f(x)=x3+x是增函数

f(x)=x3+xf‘(x)=3x²+1>0所以函数是增函数.再问:我都不敢相信,我问了这么2的问题……

f(x+t)>=f(x)能不能证明f(x)是周期函数

不能.如f(x)=2^x,对任意正常数T,满足2^(x+T)>2^x,但f(x)=2^x不是周期函数.

证明f(x)=cosx是连续函数证明证?

连续函数的定义:若函数f(x)在定义域内一点x0满足x趋于x0时的f(x)的极限=f(x0),则称f(x)在该点连续.至于证明函数的连续性.对于任意的数e>0(希腊字母打不出),由[cos(x+德尔塔

函数f(x)满足f(x+2)=-f(x),证明f(x)是周期函数

证明:∵f(x+2)=-f(x)∴f(x+4)=f(x+2+2)=-f(x+2)=f(x)∴f(x)是以4为周期的函数.再问:Ϊʲôf��x+2+2��=-f��x+2����再答:f[(x+2)+2

怎么证明这个是奇函数 已知f(3)=log2³ 且f(x+y)=f(x)+f(y)证明f(x)是奇函数

f(x+0)=f(x)+f(0)=f(x)f(0)=0f(x+(-x))=f(x)+f(-x)=f(0)=0f(x)=-f(-x)f(x)是奇函数.