作业帮 > 数学 > 作业

已知抛物线以x轴为准线 且恒过点m(0,2) 则抛物线焦点F的轨迹方程是?x^2+(y-2)^2=4 为什么

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2021/04/14 06:30:36
已知抛物线以x轴为准线 且恒过点m(0,2) 则抛物线焦点F的轨迹方程是?x^2+(y-2)^2=4 为什么
根据抛物线的定义,M是抛物线上的点
M到F的距离恒等于M到准线的距离
设F(x,y)
M到F的距离平方为x²+(y-2)²
M到准线也就是x轴距离平方为2²
所以x²+(y-2)²=2²=4
就是所要求的轨迹方程
解析几何已知圆的方程X^2+Y^2=4,若抛物线过点A(-1,0)B(1,0),且以圆的切线为准线,则抛物线的焦点轨迹方 已知圆的方程x^2+y^2=4,若抛物线过点A(-1,0),B(1,o),且已圆的切线为准线,则抛物线的焦点的轨迹方程是 已知圆C:x^2+y^2=4,动抛物线过A (-1,0)、B(1,0)两点,且以圆的切线为准线,则抛物线焦点的轨迹方程为 已知抛物线y^2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过 已知圆的方程为x+y=4.若抛物线过点A(-1.0).B(1.0),且以圆的切线为准线,则抛物线的焦点轨迹方程是 设抛物线x^2=-4y的准线与y轴的焦点为C,过点C作直线l交抛物线A、B两点,求线段AB中点M的轨迹方程. 1.设抛物线x^2=-4y的准线与y轴的焦点为C,过点C作直线l交抛物线A、B两点,求线段AB中点M的轨迹方程. 已知抛物线yˇ2=2px(P>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离为5 已知抛物线C:y²=4x的准线与x轴交于M点,F为抛物线焦点,N为抛物线上一点,且满足|NF|=√3/2|MN 已知抛物线y^2=4x,焦点为F,顶点为0,点P在抛物线上移动,M是FP的中点,求点M的轨迹方程. 已知抛物线y^2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为K的直线l与抛物线交于A、B两点,弦AB的. 高三一道抛物线小题,已知抛物线y^2=2px的焦点F到其准线的距离为8,抛物线的准线与x轴交点为K,点A在抛物线上,且|